MALBAC

Multiple Annealing and Looping_Based Amplification Cycles

MALBAC is intended to address some of the shortcomings of MDA (Zong et al., 2012). In this method, MALBAC primers randomly anneal to a DNA template. A polymerase with displacement activity at elevated temperatures amplifies the template, generating –semiamplicons.” As the amplification and annealing process is repeated, the semiamplicons are amplified into full amplicons that have a 3ê end complementary to the 5ê end. As a result, full-amplicon ends hybridize to form a looped structure, inhibiting further amplification of the looped amplicon, while only the semiamplicons and gDNA undergo amplification. Deep sequencing of the full-amplicon sequences allows for accurate representation of reads, while sequencing depth provides improved alignment for consensus sequences . This method can also be applied to cDNA for transcriptome analysis (Briese et al., 2016).

Advantages:

  • Can sequence large templates
  • Can perform single-cell sequencing or sequencing for samples with limited amounts of starting material
  • Full-amplicon looping inhibits overrepresentation of templates, reducing PCR bias
  • Can amplify GC-rich regions
  • Provides uniform genome coverage
  • Lower allele dropout rate compared to MDA

Disadvantages:


Reagents:

Illumina Library prep and Array Kit Selector



Reviews:

Leung M. L., Wang Y., Kim C., et al. Highly multiplexed targeted DNA sequencing from single nuclei. Nat Protoc. 2016;11:214-235

Zhang X., Marjani S. L., Hu Z., Weissman S. M., Pan X., et al. Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects. Cancer Res. 2016;76:1305-1312

Bowers R. M., Clum A., Tice H., et al. Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community. BMC Genomics. 2015;16:856

Grun D. and van Oudenaarden A. Design and Analysis of Single-Cell Sequencing Experiments. Cell. 2015;163:799-810

Hou Y., Wu K., Shi X., Li F., Song L., et al. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing. Gigascience. 2015;4:37

Li N., Wang L., Wang H., Ma M., Wang X., et al. The Performance of Whole Genome Amplification Methods and Next-Generation Sequencing for Pre-Implantation Genetic Diagnosis of Chromosomal Abnormalities. J Genet Genomics. 2015;42:151-159

Saadatpour A., Lai S., Guo G. and Yuan G. C. Single-Cell Analysis in Cancer Genomics. Trends Genet. 2015;31:576-586

Snyder M. W., Adey A., Kitzman J. O. and Shendure J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat Rev Genet. 2015;16:344-358

Sun H. J., Chen J., Ni B., Yang X. and Wu Y. Z. Recent advances and current issues in single-cell sequencing of tumors. Cancer Lett. 2015;365:1-10

Wang Y. and Navin N. E. Advances and applications of single-cell sequencing technologies. Mol Cell. 2015;58:598-609



References:

Gui B., Yang P., Yao Z., et al. A New Next-Generation Sequencing-Based Assay for Concurrent Preimplantation Genetic Diagnosis of Charcot-Marie-Tooth Disease Type 1A and Aneuploidy Screening. J Genet Genomics. 2016;43:155-159

Mehetre G. T., Paranjpe A. S., Dastager S. G. and Dharne M. S. Complete metagenome sequencing based bacterial diversity and functional insights from basaltic hot spring of Unkeshwar, Maharashtra, India. Genom Data. 2016;7:140-143

Briese M., Saal L., Appenzeller S., Moradi M., Baluapuri A. and Sendtner M. Whole transcriptome profiling reveals the RNA content of motor axons. Nucleic Acids Res. 2016;44:e33

Huang J., Yan L., Lu S., Zhao N., Xie X. S. and Qiao J. Validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of blastocysts. Fertil Steril. 2016;105:1532-1536

Yan L., Huang L., Xu L., et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci U S A. 2015;112:15964-15969

Chapman A. R., He Z., Lu S., et al. Single cell transcriptome amplification with MALBAC. PLoS One. 2015;10:e0120889

Dey S. S., Kester L., Spanjaard B., Bienko M. and van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33:285-289

Ning L., Li Z., Wang G., Hu W., Hou Q., et al. Quantitative assessment of single-cell whole genome amplification methods for detecting copy number variation using hippocampal neurons. Sci Rep. 2015;5:11415

Yan L., Huang L., Xu L., Huang J., Ma F., et al. Live births after simultaneous avoidance of monogenic diseases and chromosome abnormality by next-generation sequencing with linkage analyses. Proc Natl Acad Sci U S A. 2015;112:15964-15969

Zhang C. Z., Adalsteinsson V. A., Francis J., et al. Calibrating genomic and allelic coverage bias in single-cell sequencing. Nat Commun. 2015;6:6822