ATAC-Seq/Fast-ATAC

Assay for Transposase-Accessible Chromatin Sequencing / ATAC-seq Optimized for Blood Cells

ATAC-Seq uses the Tn5 transposome to detect nucleosome-free regions of the genome (Buenrostro et al., 2013). The method is commonly used, and optimized protocols are available for tissues, such as blood (Fast-ATAC) (Corces et al., 2016), neurons (Milani et al., 2016), biobank specimens (Scharer et al., 2016), and single cells (scATAC-seq (Buenrostro et al., 2015) and single-cell ATAC-seq (Cusanovich et al., 2015) ).

In this method, gDNA is incubated with Tn5 transposomes, which fragments it and adds adapters simultaneously, in open chromatin regions. Deep sequencing of the purified regions provides base-pair resolution of nucleosome-free regions in the genome.

Advantages:

  • Two-step protocol with no adapter ligation steps, gel purification, or crosslink reversal
  • High signal-to-noise ratio compared to FAIRE-Seq

Disadvantages:

  • During mechanical sample processing, bound chromatin regions might open and be tagged by the transposome
  • Only half of the molecules contain the adapters in the orientation required for PCR amplification
  • Distance between adapter sites may not be optimal for PCR amplification (Sos et al., 2016)


Reagents:

Illumina Library prep and Array Kit Selector



Reviews:

Chaitankar V., Karakulah G., Ratnapriya R., Giuste F. O., Brooks M. J., et al. Next generation sequencing technology and genomewide data analysis: Perspectives for retinal research. Prog Retin Eye Res. 2016;55:1-31

Yan H., Tian S., Slager S. L., Sun Z. and Ordog T. Genome-Wide Epigenetic Studies in Human Disease: A Primer on -Omic Technologies. Am J Epidemiol. 2016;183:96-109



References:

Bogdanovic O., Smits A. H., de la Calle Mustienes E., Tena J. J., Ford E., et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet. 2016;48:417-426

Corces M. R., Buenrostro J. D., Wu B., Greenside P. G., Chan S. M., et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 2016;48:1193-1203

Miller C. L., Pjanic M., Wang T., et al. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci. Nat Commun. 2016;7:12092

Wu J., Huang B., Chen H., et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature. 2016;534:652-657

Ackermann A. M., Wang Z., Schug J., Naji A. and Kaestner K. H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab. 2016;5:233-244

Atianand M. K., Hu W., Satpathy A. T., et al. A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell. 2016;165:1672-1685

Boukhaled G. M., Cordeiro B., Deblois G., et al. The Transcriptional Repressor Polycomb Group Factor 6, PCGF6, Negatively Regulates Dendritic Cell Activation and Promotes Quiescence. Cell Rep. 2016;16:1829-1837

de Dieuleveult M., Yen K., Hmitou I., Depaux A., Boussouar F., et al. Genome-wide nucleosome specificity and function of chromatin remodellers in ES cells. Nature. 2016;530:113-116

Flynn R. A., Do B. T., Rubin A. J., et al. 7SK-BAF axis controls pervasive transcription at enhancers. Nat Struct Mol Biol. 2016;23:231-238

George J., Uyar A., Young K., et al. Leukaemia cell of origin identified by chromatin landscape of bulk tumour cells. Nat Commun. 2016;7:12166

Han D., Lu X., Shih A. H., et al. A Highly Sensitive and Robust Method for Genome-wide 5hmC Profiling of Rare Cell Populations. Mol Cell. 2016;63:711-719

Hay D., Hughes J. R., Babbs C., Davies J. O., Graham B. J., et al. Genetic dissection of the alpha-globin super-enhancer in vivo. Nat Genet. 2016;48:895-903

Kaaij L. J., Mokry M., Zhou M., Musheev M., Geeven G., et al. Enhancers reside in a unique epigenetic environment during early zebrafish development. Genome Biol. 2016;17:146

Kaufman C. K., Mosimann C., Fan Z. P., et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 2016;351:aad2197

Koues O. I., Collins P. L., Cella M., et al. Distinct Gene Regulatory Pathways for Human Innate versus Adaptive Lymphoid Cells. Cell. 2016;165:1134-1146

Lu F., Liu Y., Inoue A., Suzuki T., Zhao K., et al. Establishing Chromatin Regulatory Landscape during Mouse Preimplantation Development. Cell. 2016;165:1375-1388

Proudhon C., Snetkova V., Raviram R., et al. Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation. Cell Rep. 2016;15:2159-2169

Rendeiro A. F., Schmidl C., Strefford J. C., et al. Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks. Nat Commun. 2016;7:11938

Sebe-Pedros A., Ballare C., Parra-Acero H., et al. The Dynamic Regulatory Genome of Capsaspora and the Origin of Animal Multicellularity. Cell. 2016;165:1224-1237

Shih H. Y., Sciume G., Mikami Y., et al. Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality. Cell. 2016;165:1120-1133

Smith J. D., Suresh S., Schlecht U., et al. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Genome Biol. 2016;17:45

Wang L., Siegenthaler J. A., Dowell R. D. and Yi R. Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science. 2016;351:613-617

Wang W., Org T., Montel-Hagen A., et al. MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis. Nat Commun. 2016;7:12376